Прогнозирование в бизнесе. Часть 1. Скользящее среднее

В бизнесе,  как и в любой другой деятельности человек, хочет знать, а что будет дальше. Даже трудно себе представить богатство того счастливца, который с 100% точностью мог бы угадывать будущее. Но, к сожалению (или, же к счастью) дар предвидения встречается крайне редко. НО… стараться хотя бы в общих чертах представить будущую бизнес ситуацию предприниматель просто обязан.

Вначале я хотел написать в одном посте сразу про несколько простых и удобных методик, но пост стал  получаться очень большим. И поэтому будет несколько постов посвященных теме прогнозирования. В данном посте мы опишем один из наиболее простых методов прогнозирования с использованием возможностей Excel – метод скользящего среднего.

Чаще всего в практике маркетинговых исследований прогнозируются следующие величины:

  • Объемы продаж
  • Размер и емкость рынка
  • Объемы производства
  • Объемы импорта
  • Динамика цен
  • И проч.

Для прогнозирования, которое мы рассматриваем в данном посте советую придерживаться следующего простого алгоритма:

1. Сбор вторичной информации по проблеме (желательно как количественной, так и качественной). Так, например если Вы прогнозируете размер своего рынка, нужно собрать статистическую информацию по рынку (объемы производства, импорта, динамику цен, объемы продаж и проч.) так и тенденции, проблемы или возможности рынка. Если вы прогнозируете объем продаж, тогда вам нужны данные о продажах за период. Для прогнозирования, чем больше исторических данных вы рассмотрите, тем лучше. Желательно прогнозирование дополнить анализом влияющих на прогнозируемое явление факторов (можно SWOT, PEST анализ или любой другой). Это позволит понимать логику развития, и вы сможете таким образом проверять правдоподобность той или иной модели тренда.

2. Далее желательно проверить количественные данные. Для этого нужно сравнить  значения одних и тех же показателей, но полученных из разных источников. Если все сходиться можно «загонять» данные в Excel. Также данные должны соответствовать следующим требованиям:

  • Базовая линия включает в себя результаты наблюдений — начиная с самых ранних и заканчивая последними.
  • Все временные периоды базовой линии имеют одинаковую продолжительность. Не следует смешивать данные, например, за один день со средними трехдневными показателями.
  • Наблюдения фиксируются в один и тот же момент каждого временного периода. Например трафик замеряться должен в одно и то же время.
  • Пропуск данных не допускается. Пропуск даже одного результата наблюдений нежелателен при прогнозировании» поэтому, если в ваших наблюдениях отсутствуют результаты за незначительный отрезок времени, постарайтесь восполнить их хотя бы приблизительными данными.

3. Проверив данные, можно применять различные методики прогнозирования. Начать я бы хотел с самого простого метода, описанного ниже.

МЕТОД СКОЛЬЗЯЩЕГО СРЕДНЕГО

Метод скользящего среднего применять достаточно несложно, однако он слишком прост для построения точного прогноза. При использовании этого метода прогноз любого периода представляет собой не что иное, как получение среднего показателя по нескольким предыдущим наблюдениям временного ряда. Например, если вы выбрали скользящее среднее за три месяца, прогнозом на май будет среднее значение показателей за февраль, март и апрель. Выбрав в качестве метода прогнозирования скользящее среднее за четыре месяца, вы сможете оценить майский показатель как среднее значение показателей за январь, февраль, март и апрель.

Как правило, прогноз с применением скользящего среднего рассматривается как прогноз на период, непосредственно следующий за периодом наблюдения. Вместе с этим такой прогноз применим, когда исследуемое явление развивается последовательно, т.е. имеются определенные тенденции, и кривая значений не скачет по диаграмме как угорелая.

Чтобы определить, сколько наблюдений желательно включить в скользящее среднее, нужно исходить из предыдущего опыта и имеющейся информации о наборе данных. Необходимо выдерживать равновесие между повышенным откликом скользящего среднего на несколько самых свежих наблюдений и большой изменчивостью этого среднего.

Итак, как это делать в Excel

Рассмотрим на примере

Пример прогнозирования_ скользящее среднее

1. Допустим, что у Вас есть объемы месячных продаж за последние 29 месяцев. И вы хотите определить, какой объем продаж будет в 30 месяце. Но, если честно, вовсе не обязательно при расчете прогнозных значений оперировать 30 историческими значениями, ведь этот метод будет использовать для расчета среднего лишь несколько последних месяцев. Поэтому для расчета достаточно лишь несколько прошлых месяцев.

2. Приводим  эту таблицу в вид понятный Excel, т.е. чтобы все значения были в одном ряду.

3. Далее вводим формулу расчета среднего по предыдущим трем (четырем, пяти? как сами выберите) значениям (см. в приложенном примере). Наиболее удобно все-таки использовать для расчета последние 3 значения, т.к. если учитывать больше, данные будут чересчур усредняться, если меньше – не будут точными.

4. Используя функцию автозаполнения для всех последующих значений вплоть до 30, прогнозного месяца. Таким образом, функция рассчитает прогноз на июнь 2010 г. Согласно прогнозным значениям в июне продажи составят около 408 единиц товара. Но обратите внимание, что если тенденция падения постоянна, как в нашем примере, расчет прогноза по средней будет немного завышенным, или будет как бы «отставать» от реальных значений.

Мы рассмотрели одну из самых простых методик прогнозирования – метод скользящего среднего. В следующих постах мы рассмотрим другие, более точные и сложные методики. Надеюсь, мой пост будет Вам полезен.